Electrode Reduction and Oxidation Potential
Corrosion, the degradation of metals as a result of
electrochemical
activity,
requires an anode and a cathode in order to occur.
The
anode
is the metal or site with a higher potential to oxidize (lose electrons)
while
the
cathode
is the metal or site with a higher potential for reduction (gaining of
electrons). In other words, the cathode has a lower potential to
oxidize than the anode.
The measure of a material to
oxidize or lose electrons is known as its
'oxidation potential.'
A
difference between the oxidation potentials of two metals or sites can
lead to corrosion that will consume
the metal or site that is more anodic. This is assuming that the two other
things needed for corrosion are also present:
electrical connection
between the two metals or
sites with oxidation potential difference and the presence of an
electrolyte
(such as water) to conduct ions between them.
Table 1 presents the
standard oxidation potential values of various elements. The
values of the oxidation potential in this table are used
relative
to each other, to determine the tendency of a metal to become a cathode
(or anode) with respect to another metal, for corrosion to occur.
Table 1.
Standard Electrode Reduction and Oxidation Potential Values
Anodic
-
exhibits greater tendency to lose electrons |
Reduction
Reaction |
Eo
(V) |
Oxidation
Reaction |
Eo
(V) |
Li+
+ e- → Li |
-3.04 |
Li → Li+
+ e- |
3.04 |
K+
+ e- → K |
-2.92 |
K → K+
+ e- |
2.92 |
Ba2+
+ 2e- → Ba |
-2.90 |
Ba → Ba2+
+ 2e- |
2.90 |
Ca2+
+ 2e- → Ca |
-2.87 |
Ca → Ca2+
+ 2e- |
2.87 |
Na+
+ e- → Na |
-2.71 |
Na → Na+
+ e- |
2.71 |
Mg2+
+ 2e- → Mg |
-2.37 |
Mg → Mg2+
+ 2e- |
2.37 |
Al3+
+ 3e- → Al |
-1.66 |
Al → Al3+
+ 3e- |
1.66 |
Mn2+
+ 2e- → Mn |
-1.18 |
Mn → Mn2+
+ 2e- |
1.18 |
2H2O
+ 2e- → H2 + 2 OH- |
-0.83 |
H2
+ 2 OH- → 2H2O + 2e- |
0.83 |
Zn2+
+ 2e- → Zn |
-0.76 |
Zn → Zn2+
+ 2e- |
0.76 |
Cr2+
+ 2e- → Cr |
-0.74 |
Cr → Cr2+
+ 2e- |
0.74 |
Fe2+
+ 2e- → Fe |
-0.44 |
Fe → Fe2+
+ 2e- |
0.44 |
Cr3+
+ 3e- → Cr |
-0.41 |
Cr → Cr3+
+ 3e- |
0.41 |
Cd2+
+ 2e- → Cd |
-0.40 |
Cd → Cd2+
+ 2e- |
0.40 |
Co2+
+ 2e- → Co |
-0.28 |
Co → Co2+
+ 2e- |
0.28 |
Ni2+
+ 2e- → Ni |
-0.25 |
Ni → Ni2+
+ 2e- |
0.25 |
Sn2+
+ 2e- → Sn |
-0.14 |
Sn → Sn2+
+ 2e- |
0.14 |
Pb2+
+ 2e- → Pb |
-0.13 |
Pb → Pb2+
+ 2e- |
0.13 |
Fe3+
+ 3e- → Fe |
-0.04 |
Fe → Fe3+
+ 3e- |
0.04 |
Arbitrary
Neutral
: H2 |
Reduction
Reaction |
Eo
(V) |
Oxidation
Reaction |
Eo
(V) |
2H+
+ 2e- → H2 |
0.00 |
H2
→ 2H+ + 2e- |
0.00 |
Cathodic
-
exhibits greater tendency to gain electrons |
Reduction
Reaction |
Eo
(V) |
Oxidation
Reaction |
Eo
(V) |
S + 2H+
+ 2e- → H2S |
0.14 |
H2S
→ S + 2H+ + 2e- |
-0.14 |
Sn4+
+ 2e- → Sn2+ |
0.15 |
Sn2+
→ Sn4+ + 2e- |
-0.15 |
Cu2+
+ e- → Cu+ |
0.16 |
Cu+
→ Cu2+ + e- |
-0.16 |
SO42+
+ 4H+ + 2e- → SO2 + 2H2O |
0.17 |
SO2
+ 2H2O → SO42+ + 4H+ + 2e-
|
-0.17 |
AgCl + e-
→ Ag + Cl- |
0.22 |
Ag + Cl-
→ AgCl + e- |
-0.22 |
Cu2+
+ 2e- → Cu |
0.34 |
Cu → Cu2+
+ 2e- |
-0.34 |
ClO3-
+ H2O + 2e- → ClO2- +
2OH- |
0.35 |
ClO2-
+ 2OH- → ClO3- + H2O + 2e- |
-0.35 |
2H2O
+ O2 + 4e- → 4OH- |
0.40 |
4OH-
→ 2H2O + O2 + 4e- |
-0.40 |
Cu+
+ e- → Cu |
0.52 |
Cu → Cu+
+ e- |
-0.52 |
I2
+ 2e- → 2I- |
0.54 |
2I-
→ I2 + 2e- |
-0.54 |
O2
+ 2H+ + 2e- → H2O2 |
0.68 |
H2O2
→ O2 + 2H+ + 2e- |
-0.68 |
Fe3+
+ e- → Fe2+ |
0.77 |
Fe2+
→ Fe3+ + e- |
-0.77 |
NO3-
+ 2H+ + e- → NO2 + H2O |
0.78 |
NO2
+ H2O → NO3- + 2H+ + e-
|
-0.78 |
Hg2+
+ 2e- → Hg |
0.78 |
Hg → Hg2+
+ 2e- |
-0.78 |
Ag+
+ e- → Ag |
0.80 |
Ag → Ag+
+ e- |
-0.80 |
NO3-
+ 4H+ +3 e- → NO + 2H2O |
0.96 |
NO + 2H2O
→ NO3- + 4H+ +3 e-
|
-0.96 |
Br2
+ 2e- → 2Br- |
1.06 |
2Br-
→ Br2 + 2e- |
-1.06 |
O2
+ 4H+ + 4e- → 2H2O |
1.23 |
2H2O
→ O2 + 4H+ + 4e- |
-1.23 |
MnO2
+ 4H+ + 2e- → Mn2+ + 2H2O |
1.28 |
Mn2+
+ 2H2O → MnO2 + 4H+ + 2e-
|
-1.28 |
Cr2O72-
+ 14H+ + 6e- → 2Cr3+ + 7H2O |
1.33 |
2Cr3+
+ 7H2O → Cr2O72- + 14H+
+ 6e- |
-1.33 |
Cl2
+ 2e- → 2Cl- |
1.36 |
2Cl-
→ Cl2 + 2e- |
-1.36 |
Ce4+
+ e- → Ce3+ |
1.44 |
Ce3+
→ Ce4+ + e- |
-1.44 |
Au3+
+ 3e- → Au |
1.50 |
Au → Au3+
+ 3e- |
-1.50 |
MnO4-
+ 8H+ + 5e- → Mn2+ + 4H2O |
1.52 |
Mn2+
+ 4H2O → MnO4- + 8H+ + 5e- |
-1.52 |
H2O2
+ 2H+ + 2e- → 2H2O |
1.78 |
2H2O
→ H2O2 + 2H++ 2e-
|
-1.78 |
Co3+
+ e- → Co2+ |
1.82 |
Co2+
→ Co3+ + e- |
-1.82 |
S2O82-
+ 2e- → 2SO42- |
2.01 |
2SO42-
→ S2O82- + 2e- |
-2.01 |
O3
+ 2H+ + 2e- → O2 + H2O |
2.07 |
O2
+ H2O → O3 + 2H+ + 2e- |
-2.07 |
F2
+ 2e- → 2F- |
2.87 |
2F-
→ F2 + 2e- |
-2.87 |
For example,
if tin is deposited over copper, then there is a possibility for
corrosion to occur. From Table 1, copper has a lower oxidation potential (-0.34 V) than tin
(0.14 V), so Cu can serve as the cathode while Sn can serve as the anode,
creating the potential difference necessary for corrosion to occur.
See
also: Corrosion;
Package
Failures; Die Failures;
Failure
Analysis;
Reliability Models
Table 1 References:
1)
http://www.physchem.co.za
2)
http://hyperphysics.phy-astr.gsu.edu
HOME
Copyright
© 2005
www.EESemi.com.
All Rights Reserved.